Site Metrics and Web Analytics by WebSTAT
Accueil > Catalogue > Métabolisme & Prise alimentaire
Produits
Catégories
SYSTèME MODULAIRE:
ENREGISTREMENT DE O2 ET CO2
(Modèle : OXYLET)
Système modulaire permettant l'intégration du métabolisme respiratoire,
de l'apport de nourriture et de boisson, de l'activité spontanée et
de la station debout par l'animal dans des cages spécifiquement adaptées


- Plus d'informations - - Documents - - Contacter Bioseb -
Clients
Publications
Produits liés / accessoires  
  • Plateforme ANYPHY Lyon, France
  • LABORATOIRE MTM Vandoeuvre, France
  • Génopole Toulouse, France
  • INSERM St MARTIN D'HERE, France
  • INSERM U 568 Nice, France
  • CRN2M UMR 6231 Marseille, France
  • BIOMEOSTASIS Marseille, France
  • INSERM U 626 Marseille, France
  • GFCP Timone Marseille, France
  • Institut Pasteur INSERM U 1011 Lille, France
  • LEPHE Evry, France
  • MERCK santé Chilly-Mazarin, France
  • Laboratoires Servier Surresnes, France
  • UMR CNRS 5123 Villeurbanne, France
  • EA 1274 Rennes, France
Télécharger PDF
Cette page est disponible dans les langues suivantes:
! NOUVEAUX TRAVAUX DE RECHERCHE ! Une récente publication scientifique de C Saint-Laurent , S Garcia , V Sarrazy, K Dumas, F Authier, S Sore, A Tran, P Gual, I Gennero, J-P Salles, E Gouze dans "PLOS One" met en évidence l'utilité de notre Système modulaire: enregistrement de O2 et CO2: Early postnatal soluble FGFR3 therapy prevents the atypical development of obesity in achondroplasia

Early postnatal soluble FGFR3 therapy prevents the atypical development of obesity in achondroplasia
C Saint-Laurent , S Garcia , V Sarrazy, K Dumas, F Authier, S Sore, A Tran, P Gual, I Gennero, J-P Salles, E Gouze
Université Côte d’Azur, CHU, Inserm, C3M, Nice, France
Published in "PLOS One" (2018-04-13)


Achondroplasia is a rare genetic disease is characterized by abnormal bone development and early obesity. While the bone aspect of the disease has been thoroughly studied, early obesity affecting approximately 50% of them during childhood has been somewhat neglected. It nevertheless represents a major health problem in these patients, and is associated to life-threatening complications including increasing risk of cardiovascular pathologies. We have thus decided to study obesity in patients and to use the mouse model to evaluate if soluble FGFR3 therapy, an innovative treatment approach for achondroplasia, could also impact the development of this significant complication.

Présentation

Le métabolisme respiratoire est évalué au moyen de la calorimétrie indirecte, un système optimisé pour les études sur les rongeurs de laboratoire (souris et rats).

Principe de fonctionnement

L'apport de nourriture et de boissons et l'activité sont évalués à l'aide d'un de capteur de poids. Cette technologie permet l'évaluation continue de consommation de nourriture et de boissons par l'animal, ainsi que de l'activité spontanée avec la plus grande précision.
L'évaluation de la posture debout exige simplement un supplément infrarouge (IR) relié au châssis du système. La conception modulaire permet facilement l'extension du système pour l'ajout d'une des options.
Le chercheur peut sélectionner uniquement les composants correspondant à son intérêt initial ... mais avec la possibilité d'en ajouter d'autres à une date ultérieure.

Des configurations spéciales de ce système sont disponibles pour effectuer des études de calorimétrie avec les rats nouveau-nés ou au cours d'expériences sur tapis roulant.




Une des principales innovations de ce système est que l’OXYLET ne nécessite pas d’unités de séchage ou de colonnes de dessiccation qui peuvent être trouvées dans des systèmes de technologie plus ancienne.
Un autre point fort est l’utilisation de capteurs à haute sensibilité avec un temps de réponse très rapide à la fois pour des mesures de O2 et de CO2.
Des cages étanches standards permettent de suivre le métabolisme des rongeurs pendant plusieurs heures. Des cages étanches à l’air, avec des distributeurs alimentaires et de boissons, lorsque des études de plusieurs jours doivent être effectuées, peuvent être proposées.

Paramètres mesurés

• Consommation d'O2
• Production de CO2
• Quotient respiratoire
• Échanges énergétiques
• Consommation d'aliments sur des intervalles de temps définis par l'utilisateur
• Consommation de boisson sur des intervalles de temps définis par l'utilisateur
• Moyenne d'activité spontanée sur des intervalles de temps définis par l'utilisateur
• Nombre de posture debout sur des intervalles de temps définis par l'utilisateur

Principales caractéristiques

• Système facilement extensible disponible en différentes configurations
• Capteurs très sensibles et stables pour les mesures d'O2 et de CO2
• Système optimisé pour le rat et la souris
• Capteur laser pour n'avoir qu'une faible influence de l'humidité de l'air sur la mesure de gaz O2/CO2
• Technologie de poids nouvellement adaptée avec des capteurs pour le suivi de la prise de nourriture et de boisson et de l'activité spontanée, fournissant une plus grande précision
• Distributeurs de nourriture et de boissons externes afin d'éviter toute influence sur l'espace de vie de l'animal ainsi que les artefacts indésirables
• Registres de la nourriture et de la boisson absorbées et leur gaspillage par le biais de systèmes spécifiquement adaptés
• La posture debout peut être évaluée à l'aide d'un cadre infrarouge supplémentaire

Domaines d'application

Cet appareil est spécialement recommandé pour les études dans les domaines suivants :
• Anorexie et ses traitements
• Dépendance ou aversion pour des substances spécifiques
• Mécanismes de faim et de satiété, associés à l’énergie dispensée
• Diabète et son traitement
• ...

Publications (Cliquez sur une publication pour obtenir des détails et lire l'abstract)

SYSTèME NERVEUX CENTRAL (SNC)
- Fonctions cérébrales -
Food Intake Adaptation to Dietary Fat Involves PSA-Dependent Rewiring of the Arcuate Melanocortin System in Mice (2012)
Food Intake Adaptation to Dietary Fat Involves PSA-Dependent Rewiring of the Arcuate Melanocortin System in Mice
Alexandre Benani, Cécile Hryhorczuk, Alexandra Gouazé, Xavier Fioramonti, Xavier Brenachot, Christophe Guissard, Alice Krezymon, Thibaut Duparc, André Colom, Emmanuelle Nédélec, Caroline Rigault, Aleth Lemoine, Jean Gascuel, Rita Gerardy-Schahn, Philippe Valet, Claude Knauf, Anne Lorsignol, and Luc Pénicaud
Université de Bourgogne, Dijon, France / INSERM, Toulouse, France / Hannover Medical School, Hannover, Germany
Published in "The Journal of Neuroscience" (2012-08-29)

Hormones such as leptin and ghrelin can rapidly rewire hypothalamic feeding circuits when injected into rodent brains. These experimental manipulations suggest that the hypothalamus might reorganize continually in adulthood to integrate the metabolic status of the whole body. In this study, we examined whether hypothalamic plasticity occurs in naive animals according to their nutritional conditions. For this purpose, we fed mice with a short-term high-fat diet (HFD) and assessed brain remodeling through its molecular and functional signature. We found that HFD for 3 d rewired the hypothalamic arcuate nucleus, increasing the anorexigenic tone due to activated pro-opiomelanocortin (POMC) neurons. We identified the polysialic acid molecule (PSA) as a mediator of the diet-induced rewiring of arcuate POMC. Moreover, local pharmacological inhibition and genetic disruption of the PSA signaling limits the behavioral and metabolic adaptation to HFD, as treated mice failed to normalize energy intake and showed increased body weight gain after the HFD challenge. Altogether, these findings reveal the existence of physiological hypothalamic rewiring involved in the homeostatic response to dietary fat. Furthermore, defects in the hypothalamic plasticity-driven adaptive response to HFD are obesogenic and could be involved in the development of metabolic diseases.

Dysregulation of energy homeostasis in mice overexpressing insulin-like growth factor-binding protein 6 in the brain. (2005)
Dysregulation of energy homeostasis in mice overexpressing insulin-like growth factor-binding protein 6 in the brain.
G. Bienvenu, D. Seurin, Y. Le Bouc, P. Even, S. Babajko et al.
National Institute of Health and Medical Research (INSERM) Unit 515, St-Antoine Hospital, Paris, France ; National Institute of Agronomical Research (INRA), Integrated Research Unit (UMR) 914, Paris, France ; National Council for Scientific Research (CNRS
Published in "Diabetologia" (2005-06-30)

Aims/hypothesis: IGFs, IGF receptors and IGF binding proteins (IGFBPs) are widely expressed in the central nervous system. To investigate the physiological significance of IGFBP-6 in the brain we established two transgenic mouse lines overexpressing human (h)-IGFBP-6 under the control of glial fibrillary acidic protein promoter. Increasing evidence suggests that insulin/IGF signalling pathways could be implicated in the neuroendocrine regulation of energy homeostasis. We explored the impact of brain IGFBP-6 overexpression on the regulation of food intake and energy balance.  Methods: Transgenic mice were fed either a control diet or a high-fat diet for up to 3 months. Glucose and insulin tolerance tests were carried out before and after the diet period. Plasma parameters (insulin, leptin, glucose, NEFAs and triglycerides) were measured, and uncoupling protein 1 (UCP-1) expression was quantified in brown adipose tissue. Oxygen consumption was also measured in both groups. Results: The transgenic mice fed a high-fat diet for 3 months developed obesity, showing increases in plasma leptin, glucose and insulin levels and mild insulin resistance. As compared with wild-type mice, no significant differences were found in the quantity of food intake. However, UCP-1 expression was down-regulated in the brown adipose tissue of the transgenic mice. Conclusions/interpretation: Our results show that brain IGFBP-6 has an impact on the regulation of energy homeostasis. These transgenic h-IGFBP-6 mice may be considered a new tool for studies of the involvement of the brain IGF system in metabolism control and obesity.

- Moelle épinière -
Dysregulation of energy homeostasis in mice overexpressing insulin-like growth factor-binding protein 6 in the brain. (2005)
Dysregulation of energy homeostasis in mice overexpressing insulin-like growth factor-binding protein 6 in the brain.
G. Bienvenu, D. Seurin, Y. Le Bouc, P. Even, S. Babajko et al.
National Institute of Health and Medical Research (INSERM) Unit 515, St-Antoine Hospital, Paris, France ; National Institute of Agronomical Research (INRA), Integrated Research Unit (UMR) 914, Paris, France ; National Council for Scientific Research (CNRS
Published in "Diabetologia" (2005-06-30)

Aims/hypothesis: IGFs, IGF receptors and IGF binding proteins (IGFBPs) are widely expressed in the central nervous system. To investigate the physiological significance of IGFBP-6 in the brain we established two transgenic mouse lines overexpressing human (h)-IGFBP-6 under the control of glial fibrillary acidic protein promoter. Increasing evidence suggests that insulin/IGF signalling pathways could be implicated in the neuroendocrine regulation of energy homeostasis. We explored the impact of brain IGFBP-6 overexpression on the regulation of food intake and energy balance.  Methods: Transgenic mice were fed either a control diet or a high-fat diet for up to 3 months. Glucose and insulin tolerance tests were carried out before and after the diet period. Plasma parameters (insulin, leptin, glucose, NEFAs and triglycerides) were measured, and uncoupling protein 1 (UCP-1) expression was quantified in brown adipose tissue. Oxygen consumption was also measured in both groups. Results: The transgenic mice fed a high-fat diet for 3 months developed obesity, showing increases in plasma leptin, glucose and insulin levels and mild insulin resistance. As compared with wild-type mice, no significant differences were found in the quantity of food intake. However, UCP-1 expression was down-regulated in the brown adipose tissue of the transgenic mice. Conclusions/interpretation: Our results show that brain IGFBP-6 has an impact on the regulation of energy homeostasis. These transgenic h-IGFBP-6 mice may be considered a new tool for studies of the involvement of the brain IGF system in metabolism control and obesity.

SYSTèME MOTEUR
- Déficits moteurs -
Progressive motor and respiratory metabolism deficits in post-weaning Mecp2- male mice. (2011)
Progressive motor and respiratory metabolism deficits in post-weaning Mecp2- male mice.
M. Pratte, N. Panayotis, A. Ghata, L. Villard, J.-C. Roux.
Faculté de Médecine de La Timone, Marseille, France.
Published in "Behavioural Brain Research" (2011-01-01)

The methyl-CpG binding protein 2 (Mecp2) gene encodes a nuclear transcriptional modulator highly expressed in post-mitotic neurons. Mutations of this gene cause a large spectrum of neurological disorders in humans. Several lines of mice harboring a constitutional deletion of Mecp2 are available. The use of these models is crucial to understand the basis of Mecp2-related pathologies. However, most of the studies performed using these lines focused on different postnatal time points. The aim of the present study was to provide a more complete description of the behavioral phenotype of the Mecp2(tm1.1Bird) mice. To this aim, we used a modified version of the SHIRPA protocol and a set of sensorimotor tests and respiratory metabolism measurements, in a longitudinal study of the Mecp2- male mice (Mecp2(-/y)) from three weeks (weaning) to eight weeks of age. Our data document, for the first time, the sequential appearance of the in vivo deficits in this mouse line. The observed deficits initially concern major parameters (such as body weight), and are followed by involuntary and sensitive defects (reflexes). Subsequently, motor functions and respiratory metabolism are severally impaired. A detailed description of these gradual defects may help to identify their neuronal origin and to elaborate novel therapeutic strategies.

SYSTèME MUSCULAIRE
- Fonctions squelettales -
Apelin Treatment Increases Complete Fatty Acid Oxidation, Mitochondrial Oxidative Capacity, and Biogenesis in Muscle of Insulin-Resistant Mice. (2012)
Apelin Treatment Increases Complete Fatty Acid Oxidation, Mitochondrial Oxidative Capacity, and Biogenesis in Muscle of Insulin-Resistant Mice.
C. Attané, C. Foussal, S. Le Gonidec, A. Benani, D. Daviaud et al.
INSERM U1048, Toulouse, France.
Published in "Diabetes" (2012-02-01)

Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 _mol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice had a better use of lipids. The complete FAO, the oxidative capacity, and mitochondrial biogenesis were increased in soleus of apelin-treated mice. The action of apelin was AMP-activated protein kinase (AMPK) dependent since all the effects studied were abrogated in HFD apelin-treated mice with muscle-specific inactive AMPK. Finally, the apelin-stimulated improvement of oxidative capacity led to decreased levels of acylcarnitines and enhanced insulin-stimulated glucose uptake in soleus. Thus, by promoting complete lipid use in muscle of insulin-resistant mice through mitochondrial biogenesis and tighter matching between FAO and the tricarboxylic acid cycle, apelin treatment could contribute to insulin sensitivity improvement.

Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice. (2009)
Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice.
P. Lebrun, E. Cognard, R. Bellon-Paul, P. Gontard, C. Filloux et al.
INSERM, Unit 907, Avenue de Valombrose, 06107 Nice, France.
Published in "Diabetologia" (2009-10-30)

Aims/hypothesis: Due to their ability to regulate various signalling pathways (cytokines, hormones, growth factors), the suppressor of cytokine signalling (SOCS) proteins are thought to be promising therapeutic targets for metabolic and inflammatory disorders. Hence, their role in vivo has to be precisely determined. Methods: We generated transgenic mice constitutively producing SOCS-3 in skeletal muscle to define whether the sole abundance of SOCS-3 is sufficient to induce metabolic disorders and whether SOCS-3 is implicated in physiological roles distinct from metabolism. Results: We demonstrate here that chronic expression of SOCS-3 in skeletal muscle leads to overweight in mice and worsening of high-fat diet-induced systemic insulin resistance. Counter-intuitively, insulin sensitivity in muscle of transgenic mice appears to be unaltered. However, following constitutive SOCS-3 production, several genes had deregulated expression, among them other members of the SOCS family. This could maintain the insulin signal into skeletal muscle. Interestingly, we found that SOCS-3 interacts with calcineurin, which has been implicated in muscle contractility. In Socs-3 transgenic muscle, this leads to delocalisation of calcineurin to the fibre periphery. Relevant to this finding, Socs-3 transgenic animals had dilatation of the sarcoplasmic reticulum associated with swollen mitochondria and decreased voluntary activity. Conclusions/interpretation: Our results show that constitutive SOCS-3 production in skeletal muscle is not in itself sufficient to induce the establishment of metabolic disorders such as diabetes. In contrast, we reveal a novel role of SOCS-3, which appears to be important for muscle integrity and locomotor activity.        




Modèle :
OXYLET
Système modulaire: enregistrement de O2 et CO2
Nous Consulter

Produits liés :
BIO-PCB-6000-1
Balance dynamique de précision
Nous Consulter

Accessoires :
METABOLISM
Logiciel METABOLISM
Nous Consulter
Version Imprimable

Bioseb - In Vivo Research Instruments
Tél : +33 (0)820 825 523 - +33 (0)442 344 360 - USA/Canada : (727) 521-1808
e-Mail : Monde: info@bioseb.com - USA/Canada: info-us@bioseb.com