Antinociceptive and chondroprotective effects of prolonged beta-caryophyllene treatment in the animal model of osteoarthritis- Focus on tolerance development
Send a publication request
close

Publication request

Thank you for your interest in our product range and your request for this publication, which will be sent to you if the research team and the journal allow it. Our commercial team will contact you as soon as possible.




- Categories : Arthritis & Osteoarthritis , Publications - ID: 1534

Authors
Mlost J, Kac P, Kedziora M, et al


Lab
Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Cracow, Poland

Journal
Neuropharmacology

Abstract
Osteoarthritis (OA) is a chronic joint disease in which cartilage degeneration leads to chronic pain. The endocannabinoid system has attracted attention as an emerging drug target for OA. However, the therapeutic potential of cannabinoids is limited by psychoactive side-effects related to CB1 activation and tolerance development for analgesic effects. Beta-Caryophyllene (BCP) is a low-efficacy natural agonist of CB2 and a common constituent of human diet with well-established anti-inflammatory properties. The results presented herein show the anti-nociceptive and chondroprotective potential of BCP in an animal model of OA induced by intra-articular injection of monoiodoacetate (MIA). Behavioural assessment included pressure application measurement and kinetic weight bearing tests. Histological assessment of cartilage degeneration was quantified using OARSI scoring. Experiments established the dose-response effects of BCP and pharmacological mechanisms of the antinociceptive action dependent on CB2 and opioid receptors. Chronic BCP treatment was able to hamper cartilage degeneration without producing tolerance for the analgesic effects. The data presented herein show that BCP is able to produce both acute and prolonged antinociceptive and chondroprotective effects. Together with the safety profile and legal status of BCP, these results indicate a novel and promising disease-modifying strategy for treating OA.

BIOSEB Instruments Used:
Kinetic Weight Bearing (BIO-KWB-DUAL)

Related products

Share this content