Chrysanthemum zawadskil Herbich attenuates dexamethasone-induced muscle atrophy through the regulation of proteostasis and mitochondrial function
Send a publication request
close

Publication request

Thank you for your interest in our product range and your request for this publication, which will be sent to you if the research team and the journal allow it. Our commercial team will contact you as soon as possible.




- Categories : Muscular atrophy , Publications - ID: 1363

Authors
H Lee, YI Kim, FS Nirmala et al


Lab
Research Group of Natural Material and Metabolism, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, South Korea.

Journal
Biomedicine & Pharmacotherapy

Abstract
Chrysanthemum zawadskii Herbich (CZH) is used in traditional medicine to treat inflammatory diseases and diabetes. However, the effects of CZH on muscle wasting remains to be studied. Here, we investigated the effect of CZH on dexamethasone (DEX), a synthetic glucocorticoid, induced muscle atrophy. To examine the effect of CZH on muscle atrophy, C2C12 myotubes were co-treated with DEX and CZH for 24 h. The treatment with CZH prevented DEX-induced myotube atrophy in a dose-dependent manner. CZH inhibited the DEX-induced decrease of the MHC isoforms and the upregulation of atrogin-1 and MuRF1 in C2C12 differentiated cells. C57BL/6 mice were supplemented with 0.1 % CZH for 8 weeks, with DEX-induced muscle atrophy stimulated in the last 3 weeks. In the mice, CZH supplementation effectively reversed DEX-induced skeletal muscle atrophy and increased the exercise capacity of the mice through the inhibition of glucocorticoid receptor translocation. Additionally, we observed that DEX-evoked impaired proteostasis was ameliorated via the Akt/mTOR pathway. CZH also prevented the DEX-induced decrease in the mitochondrial respiration. HPLC analysis demonstrated the highest concentration of acacetin-7-O-beta-d-rutinoside (AR) among 4 compounds. Moreover, AR, a functional compound of CZH, prevented DEX-evoked muscle atrophy. Thus, we suggest that CZH could be a potential therapeutic candidate against muscle atrophy and AR is the main functional compound of CZH.

BIOSEB Instruments Used:
Grip strength test (BIO-GS3)

Related products

Share this content