Early increasing-intensity treadmill exercise reduces neuropathic pain by preventing nociceptor collateral sprouting and disruption of chloride cotransporters homeostasis after peripheral nerve injury
Send a publication request
close

Publication request

Thank you for your interest in our product range and your request for this publication, which will be sent to you if the research team and the journal allow it. Our commercial team will contact you as soon as possible.




- Categories : General pain , Neuropathic pain , Pain , Publications - ID: 730

Authors
López-Álvarez VM, Modol L, Navarro X, Cobianchi S. et al.


Lab
Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain

Journal
Pain

Abstract
Activity treatments, such as treadmill exercise, are used to improve functional recovery after nerve injury, parallel to an increase in neurotrophin levels. However, despite their role in neuronal survival and regeneration, neurotrophins may cause neuronal hyperexcitability that triggers neuropathic pain. In this work, we demonstrate that an early increasing-intensity treadmill exercise (iTR), performed during the first week (iTR1) or during the first 2 weeks (iTR2) after section and suture repair of the rat sciatic nerve, significantly reduced the hyperalgesia developing rapidly in the saphenous nerve territory and later in the sciatic nerve territory after regeneration. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression in sensory neurons and spinal cord was reduced in parallel. iTR prevented the extension of collateral sprouts of saphenous nociceptive calcitonin gene-related peptide fibers within the adjacent denervated skin and reduced NGF expression in the same skin and in the L3 dorsal root ganglia (DRG). Injury also induced Na-K-2Cl cotransporter 1 (NKCC1) upregulation in DRG, and K-Cl cotransporter 2 (KCC2) downregulation in lumbar spinal cord dorsal horn. iTR normalized NKCC1 and boosted KCC2 expression, together with a significant reduction of microgliosis in L3-L5 dorsal horn, and a reduction of BDNF expression in microglia at 1 to 2 weeks postinjury. These data demonstrate that specific activity protocols, such as iTR, can modulate neurotrophins expression after peripheral nerve injury and prevent neuropathic pain by blocking early mechanisms of sensitization such as collateral sprouting and NKCC1/KCC2 disregulation.

BIOSEB Instruments Used:
Electronic Von Frey 4 (BIO-EVF4),Electronic Von Frey 5 with embedded camera (BIO-EVF5)

Share this content