Iron released from reactive microglia by noggin improves myelin repair in the ischemic brain

Authors
J A Shin, Y A Kim, H W Kim, H-S Kim, K-E Lee, J L Kang, E-M Park


Lab
Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea

Journal
Neuropharmacology

Abstract
We previously reported that the bone morphogenetic protein (BMP) antagonist, noggin, improved the repair process with an increase in the reactive microglia/macrophage population in the ischemic brain. Since BMP plays a role in intracellular iron homeostasis via the hepcidin/ferroportin axis, and iron is required for myelination, this study was aimed to determine whether noggin affected iron status and remyelination in the brain following ischemic stroke. We further examined the effect of blocking the BMP/hepcidin pathway on reactive microglia (BV2) and myelination of oligodendroglial cells (MO3.13) to define the link between microglial iron status and myelin formation. Following the noggin infusion into the ischemic brain of mice, the induction of hepcidin and ferritin protein levels decreased, and the number of myelinated axons and myelin thickness increased at 8 weeks after ischemic stroke. Noggin repressed the increase in hepcidin and ferritin levels in BV2 exposed to lipopolysaccharide (LPS) and oxygen/glucose deprivation and reperfusion (OGD/R). When MO3.13 were exposed to the conditioned media from noggin-treated BV2 (noggin CM) during reperfusion, OGD/R-induced MO3.13_cell death was reduced. Under normal conditions, noggin CM induced myelin production with an increase in ferritin levels in MO3.13, which was reversed by the iron chelator, deferoxamine. These results indicated that noggin altered the iron status in reactive microglia from the iron-storing to the iron-releasing phenotype, which contributed to myelin synthesis by providing iron. We suggest that the BMP/hepcidin pathway can be a target for the regulation of the iron status in microglia to enhance remyelination in the ischemic brain.

BIOSEB Instruments Used:
Grip strength test (BIO-GS3)

Related products

Publication request

Thank you for your interest in our product range and your request for this publication, which will be sent to you if the research team and the journal allow it. Our commercial team will contact you as soon as possible.