Supra-spinal FAAH is required for the analgesic action of paracetamol in an inflammatory context-
Send a publication request

Publication request

Thank you for your interest in our product range and your request for this publication, which will be sent to you if the research team and the journal allow it. Our commercial team will contact you as soon as possible.

Dalmann R, Daulhac L, Antri M, Eschalier A, Mallet C

Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France


Paracetamol (acetaminophen) is the most commonly used analgesic in the world. Recently, a new view of its action has emerged: that paracetamol would be a pro-drug that should be metabolized by the FAAH enzyme into AM404, its active metabolite. However, this hypothesis has been demonstrated only in naive animals, a far cry from the clinical pathologic context of paracetamol use. Moreover, FAAH is a ubiquitous enzyme expressed both in the central nervous system and in the periphery. Thus, we explored: (i) the involvement of FAAH in the analgesic action of paracetamol in a mouse model of inflammatory pain; and (ii) the contributions of central versus peripheral FAAH in this action. The analgesic effect of paracetamol was evaluated in thermal hyperalgesia, mechanical allodynia and hyperalgesia induced by an intra-plantar injection of carrageenan (3%) in FAAH knock-out mice or their littermates. Moreover, the contribution of the central and peripheral enzymes was explored by comparing the effect of a global FAAH inhibitor (URB597) to that of a peripherally restricted FAAH inhibitor (URB937) on paracetamol action. Here, we show that in a model of inflammatory pain submitted to different stimuli, the analgesic action of paracetamol was abolished when FAAH was genetically or pharmacologically inhibited. Whereas a global FAAH inhibitor, URB597 (0.3 mg/kg), reduced the anti-hyperalgesic action of paracetamol, a brain-impermeant FAAH inhibitor, URB937 (0.3 mg/kg), had no influence. However, administered intracerebroventricularly, URB937 (5 ?g/mouse) reduced the action of paracetamol. These results demonstrate that the supra-spinally-located FAAH enzyme is necessary for the analgesic action of paracetamol.

BIOSEB Instruments Used:
Von Frey Filaments (Bio-VF-M)

Related products

Share this content