Curcumin versus captopril on the functions of kidney and nerve in streptozotocin-induced diabetic rats- role of angiotensin-converting enzyme 1
Envoyer une demande de publication
close

Demande de publication

Merci pour votre intérêt pour nos produits et votre demande concernant cette publication, qui vous sera envoyée si le chercheur et le journal l'autorisent. Notre équipe commerciale vous contactera rapidement.



- Catégories : Domaines de recherche divers , Publications - ID: 764

Authors
Abd Allah ES, Gomaa AM


Lab
Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.

Journal
Appl Physiol Nutr Metab.

Abstract
Oxidative stress and inflammation are involved in the development and progression of diabetes and its complications. The renin-angiotensin system also plays an important role in the pathogenesis of diabetes and its complications. We hypothesized that curcumin and captopril would restore the kidney and nerve functions of diabetic rats through their angiotensin converting enzyme 1 (ACE1) inhibiting activity as well as their antioxidant and anti-inflammatory effects. Diabetes was induced by a single intraperitoneal injection of streptozotocin (100 mg·kg(-1) body weight). One week after induction of diabetes, rats were treated with 100 mg·kg(-1)·day(-1) curcumin or 50 mg·kg(-1)·day(-1) captopril orally for 6 weeks. Compared with diabetic control rats, curcumin- or captopril-treated diabetic rats had significantly improved blood glucose, lipid profile, kidney/body weight ratio, serum creatinine, blood urea nitrogen (BUN), and pain thresholds assessed by Von Frey filaments, hot plate test, and tail-flick test. Diabetic control rats showed increased levels of total peroxide, renal and neural tumor necrosis factor-? and interleukin-10, and renal ACE1 compared with nondiabetic rats. Although treatment with either curcumin or captopril restored the altered variables, captopril was more effective in reducing these variables. ACE1 was positively correlated with BUN and creatinine and negatively correlated with paw withdrawal threshold, hot plate reaction time, and tail-flick latency, suggesting a possible causal relationship. We conclude that curcumin and captopril protect against diabetic nephropathy and neuropathy by inhibiting ACE1 as well as oxidation and inflammation. These findings suggest that curcumin and captopril may have a role in the treatment of diabetic nephropathy and neuropathy.

BIOSEB Instruments Used:
Von Frey Filaments (Bio-VF-M)

Produits associés

Partager ce contenu