Functional variability in corticosteroid receptors is a major component of strain differences in fat deposition and metabolic consequences of enriched diets in rat-
Envoyer une demande de publication
close

Demande de publication

Merci pour votre intérêt pour nos produits et votre demande concernant cette publication, qui vous sera envoyée si le chercheur et le journal l'autorisent. Notre équipe commerciale vous contactera rapidement.



- Catégories : Domaines de recherche divers , Publications - ID: 318

Authors
N. Marissal-Arvy, A. Langlois, C. Tridon, P. Mormede.


Lab
Université de Bordeaux 2, Laboratoire PsyNuGen, Bordeaux, France.

Journal
Metabolism

Abstract
We aimed to distinguish mineralocorticoid (MR) from glucocorticoid receptor (GR) actions in the nutritional differences between the Fischer 344 (F344) and LOU/C (LOU) rat strains. The decrease of urinary Na+/K+ ratio induced via MR activation by aldosterone and decrease of circulating lymphocyte counts exerted via GR activation by dexamethasone revealed a higher efficiency of corticosteroid receptor in LOU than in F344 rats. Afterward, we submitted F344 and LOU male rats to adrenalectomy and to substitution treatments with agonists of MR or GR under 3 successive diets--standard, free choice between chow and pork lard, and an imposed high-fat/high-sugar diet--to explore the involvement of the interactions between activation of corticosteroid receptors and diet on food intake, body composition, and metabolic blood parameters in these rats. Lastly, we measured energy expenditure and substrate oxidization in various experimental conditions in LOU and F344 rats by indirect calorimetry. In LOU rats, we showed greater basal and MR-induced energy expenditure, diet-induced thermogenesis, and lipid oxidization. We showed that the F344 rat strain constitutes a relevant model of the unfavorable effects exerted by glucocorticoids via GR on food preference for high-calorie diets, abdominal fat deposition, diabetes, and other deleterious consequences of visceral obesity. Contrary to F344 rats, the LOU rats did not exhibit the expected visceral fat deposition linked to GR activation. This strain is therefore a relevant model of resistance to diet-induced obesity and to the deleterious effects exerted by glucocorticoids on metabolism.

BIOSEB Instruments Used:
OXYLET, Indirect Calorimeter (OXYLET)

Partager ce contenu