Impact of Hepatoma-Derived Growth Factor Blockade on Resiniferatoxin-Induced Neuropathy
Envoyer une demande de publication
close

Demande de publication

Merci pour votre intérêt pour nos produits et votre demande concernant cette publication, qui vous sera envoyée si le chercheur et le journal l'autorisent. Notre équipe commerciale vous contactera rapidement.



Authors
CH Wu, MK Wu, CC Lu et al


Lab
Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan

Journal
Neural Plasticity

Abstract
Resiniferatoxin is an ultrapotent capsaicin analog that mediates nociceptive processing; treatment with resiniferatoxin can cause an inflammatory response and, ultimately, neuropathic pain. Hepatoma-derived growth factor, a growth factor related to normal development, is associated with neurotransmitters surrounding neurons and glial cells. Therefore, the study aims to investigate how blocking hepatoma-derived growth factor affects the inflammatory response in neuropathic pain. Serum hepatoma-derived growth factor protein expression was measured via ELISA. Resiniferatoxin was administrated intraperitoneally to induce neuropathic pain in 36 male Sprague-Dawley rats which were divided into three groups (resiniferatoxin+recombinant hepatoma-derived growth factor antibody group, resiniferatoxin group, and control group) (n,12/group). The mechanical threshold response was tested with calibration forceps. Cell apoptosis was measured by TUNEL assay. Immunofluorescence staining was performed to detect apoptosis of neuron cells and proliferation of astrocytes in the spinal cord dorsal horn. RT-PCR technique and western blot were used to measure detect inflammatory factors and protein expressions. Serum hepatoma-derived growth factor protein expression was higher in the patients with sciatica compared to controls. In resiniferatoxin-group rats, protein expression of hepatoma-derived growth factor was higher than controls. Blocking hepatoma-derived growth factor improved the mechanical threshold response in rats. In dorsal root ganglion, blocking hepatoma-derived growth factor inhibited inflammatory cytokines. In the spinal cord dorsal horn, blocking hepatoma-derived growth factor inhibited proliferation of astrocyte, apoptosis of neuron cells, and attenuated expressions of pain-associated proteins. The experiment showed that blocking hepatoma-derived growth factor can prevent neuropathic pain and may be a useful alternative to conventional analgesics.

BIOSEB Instruments Used:
Rodent pincher - analgesia meter (BIO-RP-M)

Partager ce contenu