Tmprss3- a Transmembrane Serine Protease Deficient in Human DFNB8 and 10 Deafness- Is Critical for Cochlear Hair Cell Survival at the Onset of Hearing-
Envoyer une demande de publication
close

Demande de publication

Merci pour votre intérêt pour nos produits et votre demande concernant cette publication, qui vous sera envoyée si le chercheur et le journal l'autorisent. Notre équipe commerciale vous contactera rapidement.



- Catégories : Publications , Système auditif , Système sensoriel - ID: 323

Authors
L. Fasquelle, H. Scott, M. Lenoir, J. Wang, G. Rebillard et al.


Lab
Hôpital Saint Eloi, Institut des Neurosciences, Montpellier, France.

Journal
The Journal of Biological Chemistry

Abstract
Mutations in the type II transmembrane serine protease 3 (TMPRSS3) gene cause non-syndromic autosomal recessive deafness (DFNB8/10), characterized by congenital or childhood onset bilateral profound hearing loss. In order to explore the physiopathology of TMPRSS3 related deafness, we have generated an ethyl-nitrosourea-induced mutant mouse carrying a protein-truncating nonsense mutation in Tmprss3 (Y260X) and characterized the functional and histological consequences of Tmprss3 deficiency. Auditory brainstem response revealed that wild type and heterozygous mice have normal hearing thresholds up to 5 months of age, whereas Tmprss3(Y260X) homozygous mutant mice exhibit severe deafness. Histological examination showed degeneration of the organ of Corti in adult mutant mice. Cochlear hair cell degeneration starts at the onset of hearing, postnatal day 12, in the basal turn and progresses very rapidly toward the apex, reaching completion within 2 days. Given that auditory and vestibular deficits often co-exist, we evaluated the balancing abilities of Tmprss3(Y260X) mice by using rotating rod and vestibular behavioral tests. Tmprss3(Y260X) mice effectively displayed mild vestibular syndrome that correlated histologically with a slow degeneration of saccular hair cells. In situ hybridization in the developing inner ear showed that Tmprss3 mRNA is localized in sensory hair cells in the cochlea and the vestibule. Our results show that Tmprss3 acts as a permissive factor for cochlear hair cells survival and activation at the onset of hearing and is required for saccular hair cell survival. This mouse model will certainly help to decipher the molecular mechanisms underlying DFNB8/10 deafness and cochlear function.

BIOSEB Instruments Used:
Aron Test or Four Plates Test (LE830),Rotarod (BX-ROD)

Partager ce contenu