Analgesic effects of clinically used compounds in novel mouse models of polyneuropathy induced by oxaliplatin and cisplatin
Envoyer une demande de publication

Demande de publication

Merci pour votre intérêt pour nos produits et votre demande concernant cette publication, qui vous sera envoyée si le chercheur et le journal l'autorisent. Notre équipe commerciale vous contactera rapidement.

- Catégories : Domaines de recherche divers , Publications - ID: 629

Deuis JR, Lim YL, Rodrigues de Sousa S, Lewis RJ, Alewood PF, Cabot PJ, Vetter I.

School of Pharmacy, The University of Queensland, Woolloongabba, Australia

Neuro Oncol.

Peripheral neuropathy is the major dose-limiting side effect of cisplatin and oxaliplatin, and there are currently no effective treatments available. The aim of this study was to assess the pharmacological mechanisms underlying chemotherapy-induced neuropathy in novel animal models based on intraplantar administration of cisplatin and oxaliplatin and to systematically evaluate the analgesic efficacy of a range of therapeutics.

Neuropathy was induced by a single intraplantar injection of cisplatin or oxaliplatin in C57BL/6J mice and assessed by quantification of mechanical and thermal allodynia. The pharmacological basis of cisplatin-induced neuropathy was characterized using a range of selective pharmacological inhibitors. The analgesic effects of phenytoin, amitriptyline, oxcarbazepine, mexiletine, topiramate, retigabine, gabapentin, fentanyl, and Ca(2+/)Mg(2+) were assessed 24 hours after induction of neuropathy.

RESULTS:Intraplantar administration of cisplatin led to the development of mechanical allodynia, mediated through Nav1.6-expressing sensory neurons. Unlike intraplantar injection of oxaliplatin, cold allodynia was not observed with cisplatin, consistent with clinical observations. Surprisingly, only fentanyl was effective at alleviating cisplatin-induced mechanical allodynia despite a lack of efficacy in oxaliplatin-induced cold allodynia. Conversely, lamotrigine, phenytoin, retigabine, and gabapentin were effective at reversing oxaliplatin-induced cold allodynia but had no effect on cisplatin-induced mechanical allodynia. Oxcarbazepine, amitriptyline, mexiletine, and topiramate lacked efficacy in both models of acute chemotherapy-induced neuropathy.

CONCLUSION:This study established a novel animal model of cisplatin-induced mechanical allodynia consistent with the A-fiber neuropathy seen clinically. Systematic assessment of a range of therapeutics identified several candidates that warrant further clinical investigation.

BIOSEB Instruments Used:
Electronic Von Frey 4 (BIO-EVF4),Electronic Von Frey 5 with embedded camera (BIO-EVF5)

Partager ce contenu